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WASTE COLLECTION

Dynamic waste collection from underground containers using
sensor data, deciding on which containers to visit and in
what sequence, anticipating uncertain waste deposits
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When, where and what to order, to minimizing holding and backorder costs,

anticipating uncertainty in supply and demand
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- LAST MILE LOGISTICS

Routing and scheduling of delivery vehicles,
anticipating uncertain events (new customers,
cancellations, traffic disruptions)

Jof s ey ne e = L ; e g I L
. 1y ey (R # e L' . | L
{mi=i ! - T L ’ i
g o] - o = = = gisainr = TER | I
= e e r il Sudaioeil » 2] - - { A | W i L]

.............




TRANSPORT

Scheduling of container transport
considering various transport modes
that can be selected dynamically
based on actual circumstances,
anticipating potential disruptions and
future consolidation opportunities
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COMMON CHALLENGE

= Sequential decision-making... (e.g., upon arrival of an order,
arrival of a customer, arrival at a location, large disruption
within the network, every hour, when inventory drops below
some threshold)

= under uncertainty... (unknown travel times, unknown waiting
times at container terminals, unknown orders, unknown lead
times)

= where decisions have an uncertain but long-term impact
(e.g., one delay at a container terminal might delay arrival
times of barges at other container terminals; not transporting
containers now might result in capacity problems in the
future; accepting this customer might result in long waiting
times afterwards)

— Reinforcement Learning supports these types of decisions...
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ARTIFICIAL INTELLIGENCE

= Computer systems able to perform tasks normally requiring
human intelligence, such as visual perception, speech
recognition, decision-making...

= “Joday’s artificial intelligence... is mainly a technology of
pattern recognition, poring through vast troves of words,
images and numbers” [Robert J. Gordon, New York Times]

= Pattern recognition is one form of Al known as
(un)supervised machine learning, which involves using
observations to help train mathematical functions...

» Reinforcement Learning works differently... it involves an
“agent” interacting with its surrounding environment to
gradually learn the best action to take...
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IphaGo

= 2016
= Ancient game of Go with

consensus on good strategies
Alpha/Mu/Efficient Zero




POSITIONING RL [1/2]

Google @ ChatGPT ama_z’on

Machine Learning

Supervised Unsupervised
Learning Learning

Predictive Analytics

Reinforcement
Learning

®DynaPlex

Prescriptive Analytics

Artificial Intelligence

0 AlphaGo
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EXAMPLE 1: CHESS

= Option 1: exact/heuristic approach (brute force, Deep Blue)



EXAMPLE 1: CHESS

= Option 2: supervised learning

Loading data Feature

Preprocessing engineering Model

training
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EXAMPLE 1: CHESS

= Option 3: reinforcement learning

= Learning by playing many games, e.g., against humans or against itself in a simulator

= |earn the value of “states” or the best action to take in each “state”:



EXAMPLE 2: TAXI PROBLEM

21 22 23 24 25
16 17 18 19. 20
11 13 14 15
6 7 8 . 9. - 10
€%
|
2 7 4 5

= Approximate Value iteration
= ]1-step lookahead & update
= ADP, SARSA, TD(0)

= Post-decision state

- R(1,a)
© TR e |47 (@)

V(1) « R(1,12) + V™(12)

= Alternatively (Q-learning)

| <N

NN
arg aé?sa}i(z}{Q ((1,8,12), a)}

0™((1,8,12),12)) «
R(1,12) +

arg max {Q"((12,7,7),a)}

a€e{?,?}



EXAMPLE 2: TAXI PROBLEM

21 22 24 25

16 17 19

11 12 13 14 15

6 7 8 9 10
2 3 4

N

Approximate Policy iteration
n-step lookahead (rollout)
with batch updating

Sample a state

. Evaluate all possible actions
. After the action, run

multiple long simulations
following the current policy
Evaluate best action

. Repeat the above for many

states

. Update NN mapping states

to actions



EXAMPLE 3: SYNCHROMODAL TRANSPORT

| Today Tomorrow Tomorrow+1
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EXAMPLE 3: SYNCHROMODAL TRANSPORT

Today Tomorrow Tomorrow+1
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EXAMPLE 3: SYNCHROMODAL TRANSPORT
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EXAMPLE 3: SYNCHROMODAL TRANSPORT
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EXAMPLE 3: SYNCHROMODAL TRANSPORT
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EXAMPLE 3: SYNCHROMODAL TRANSPOR

s,\ \ n State variable [R1]

_ " State variable [R2]
Predicted  Proj State variable [R3]

_ : sts :
Costs future savings  co State variable [R1-nr]

- 1450 = -50 State variable [R2-nr]

State variable [R3-nr]
State variable [G1)]

State variable [G2]

State variable [G3]

State variable [G1-nr]
State variable [G2-nr]
State variable [G3-nr]
State variable [B1]

State variable [B2]

State variable [B3]

State varigble [B1-nr]
State variable [B2-nr]
State variable [B3-nr]
Number destinations MUST
Sum freights MUST
Number destinations MAY
Sum freights MAY
Number destinations FUTURE
Sum freights FUTURE

Sum All Freights

Constant
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DYNAPLEX PROJECT

= Deep Reinforcement Learning for Data-Driven Logistics

= Motivated by breakthroughs in DRL for gaming: when making
logistics decisions, it is equally important to anticipate the
uncertain future (e.qg., orders, delays, disruptions, etc.)

= DynaPlex toolbox: in a similar fashion as AlphaZero was
designed as a generic tool to solve various games, we
created the DynaPlex toolbox to support the rapid
development of automated decision making based on DRL

= Plug and play architecture to solve any dynamic
logistics problem, involving sequential decision
making under unertainty




DYNAPLEX TOOLBOX

Lots of T Parameter tuning (for
freedoml Less_ dependent Algorithmic framework simulation and ML)
on historical
data! Algorithm selector Visualization
Modelling framework Experiment design Parallelization
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Step 1: input model Step 2: generate simulation Step 3: train ML model
MDP elements: Automatically generate a Train a machine learning
= States computer simulation model model describing:
= Decisions based on the MDP elements. » the value of states or
= Rewards Within this simulated world, state-actions
» Transitions agents learn by trial-and- = prescribing the actions to
error. take in certain states

= a3 combination of these



EXPANDING TEAM AND PROBLEMS

=  Same-day delivery problem AS/RS warehouse = Electric fleet dispatching

» Lost sales inventory =  Spare parts stocking in a » Last-mile humanitarian
replenishment problem small supply chain (like the logistics

= Dual sourcing problem with beer game) = Dynamic fleet size problem
additive manufactured parts =  Airplane revenue = Perishable inventory control

= 3D Bin Packing management = Cliff-walking problem

* Jointinspection and " Traveling maintainer =  Maintenance planner
replenishment of inventory problem G Tetris. P
with drones =  Multimodal transport with ames (Tetris, Pacman)

=  Routing of robots in an trucks and barges =  Many more...
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