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1 Introduction

In the contemporary landscape of decision-making, the integration of advanced arti-

ficial intelligence (AI) technologies, specifically neural network algorithms, presents

a frontier of immense potential and complexity. This project focuses on the pivotal

interactions between human planners and AI recommendations generated by sophis-

ticated neural network algorithms. The impetus for this inquiry is anchored in two

critical considerations.

Firstly, the project aims to dissect the dynamics of decision-making in scenarios

where human experience and intuition intersect with the data-driven insights pro-

vided by neural networks. Neural networks, with their unparalleled ability to analyze

vast datasets and identify patterns beyond human capability, represent a pinnacle of

AI development. However, their integration into human decision-making processes is

a nuanced and intricate phenomenon. This study endeavors to unravel these com-

plexities, offering insights into how human planners interpret, trust, and utilize the

advanced recommendations generated by neural networks.

Secondly, this exploration is driven by the necessity to understand how the use

of such cutting-edge AI tools influences the behavior and choices of human decision-

makers. The interaction between human cognition and machine intelligence is not

merely additive; it is transformative. The potential of neural network algorithms to

enhance decision-making processes in terms of efficiency, precision, and innovation

is immense. However, the role of the human planner in interpreting, contextualiz-

ing, and ultimately making decisions based on these AI recommendations is equally

crucial.

This project, therefore, seeks to address a gap in the current understanding of

human-AI collaboration: how do advanced neural network recommendations influence

human decision-makers, and what are the implications of this interplay for decision

quality and the future of AI in decision-making? By delving into these questions, the

project aims to offer a comprehensive analysis of the synergies and frictions in human-

neural network collaborations, highlighting the importance of human oversight in an

increasingly AI-driven world.

In essence, this project is motivated by the urgent need to unravel the complexi-

ties of human decision-making in the age of advanced neural network algorithms. It

aspires to contribute significantly to the discourse on optimizing human-AI collabora-

tion, recognizing the transformative impact such collaboration has on various sectors

and the critical importance of maintaining a balance between machine efficiency and
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human judgment.

Building upon the motivation laid out, this report unfolds through a series of

meticulously structured sections, each focusing on a distinct aspect of the interplay

between human decision-making and AI recommendations in the context of supply

chain management.

Section 2 introduces the practical application of our study - a supply chain game

designed as a testbed for human-AI interaction. This section details the AI deci-

sion support tool, developed using advanced neural network algorithms, and explains

how it integrates into the supply chain game, providing recommendations to human

participants.

Section 3 outlines the design of the experiment, including participant selection,

data collection methods, and the specific metrics used to evaluate the effectiveness of

AI recommendations in influencing human decision-making within the game.

Section 4 summarizes the behavioral patterns of human participants when in-

teracting with the AI tool, highlighting how their decisions were influenced by AI

recommendations and identifying key trends and insights from the data.

Section 5 discusses the implications of the findings for future applications of AI in

supply chain management and decision-making. This section also suggests avenues for

further research, considering the limitations of the current study, and concludes with

a summary of the overarching insights and their significance in the broader context

of human-AI collaboration.

Each section is designed to build upon the previous ones, leading to a compre-

hensive understanding of how neural network-based AI recommendations can shape

human decision-making in complex, real-world scenarios.
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2 Supply chain game and decision support embed-

ded algorithms

2.1 Supply chain game

We develop a digital supply chain planning game as Figure 1 depicts. The planner

makes decisions regarding manufacturing products to fulfill the demands from three

markets: cellphone market in the NL, cellphone market in DE, and game computer

market in the NL.

Figure 1: Decision interface in the supply chain game

The planner makes three types of decisions in each round – ordering, assembling,

and shipping.

• Ordering - the planner has 6 tokens to order either product components (needed

for assembling a product) or finished products.

• Assembling - once the components arrive in the warehouse, the planner can

assemble them into a final product (a smartphone or a game computer).

• Shipping - When there are smartphones available on the NL market), the plan-

ner can ship some (<= the inventory in NL) to the DE market.

While the planner is making these decisions, he does not know the demand of the

current round. The demand is realized in the end of the round, which is about which

market requests how many products (randomly drawn from 1-6). After the planner
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submits his decisions, Figure 2 appears informing the planner of the realized demand.

The game lasts 10 rounds.

Figure 2: Market demand after planning decision

2.2 Algorithm-embedded decision support tool

While the planner is making decisions, the game provides him a suggestion, so called

AI plan. He can click the “apply AI plan” button to apply the AI plan in the cur-

rent round, see the left bottom corner in Figure 1. He can also press the button

on the right bottom to preview AI plan. The AI plan is based on a neural net-

work and reinforcement learning algorithm. We trained a model via trial and error

methods/reinforcement learning. and employed DynaPlex/DCL. Figure 3 depicts the

three steps.

Figure 3: Policy gradient

The first step is to generate samples by using the policy (a neural network) in

the environment. The second step is to keep track of the rewards obtained. And
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the third step is to perform a gradient descent step on the policy. The trained algo-

rithm performs quite well in the context: it clearly outperformed PPO (a well-known

benchmark), it outperformed about 50 human subjects in semi-controlled trial, where

the algorithm was fed the same demand sequence as the humans, and it outperforms

several well-known heuristics.
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3 Experiment design and implementation

We conducted controlled incentivized lab experiments with humans in the role of

planners in the supply chain game outlined in the previous section. We ran 8 sessions

in total for 4 treatments at Tilburg University in Spring 2023. The treatments were

between-subjects which did not allow a subject to attend more than one treatment.

In total 150 subjects participated in the experiment. They received cash payment

and the amount depended on their score in the experiment. Each session lasted about

1.5 hours.

3.1 Treatments

In the experiment, each subject played three supply chain games. Each supply game

consists of 10 rounds. The first game is referred to as Stage I, the second game is

Stage II, and the third is Stage III in Table 1. In Stage I, subjects play the supply

chain game without the support of the AI plan. In Stages II and III, the subjects in

relevant treatments get the support of the AI plan, which depends on the treatment.

Table 1: Treatments completed in the spring of 2023

Treatment Stage I Stage II Stage III # of subjects

Baseline No AI No AI No AI 34

Learning No AI AI No AI 39

Experienced No AI No AI AI 38

AI-able No AI AI AI 39

As we shown in Table 1, there are four treatments related to when the subjects

can get the support of the AI plan.

• Baseline treatment consists of three supply chain games in which AI plan is

not present.

• Learning treatment is about how subjects learn from the AI plan. The AI

plan is only present in Stage II.

• Experienced treatment is to observe how the AI plan can help the experienced

subjects. The AI plan is only present in Stage III.

• AI-able treatment provides subjects the AI plan in Stage II and Stage III.
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3.2 Prior experiment survey

Before the experiment starts, we conduct a survey which consists of risk attitude

measures, cognitive measures, and attitudes toward AI/algorithmic tool measures to

capture individual characteristics of the participating subjects.

We use the lottery choice test from Holt and Laury (2002) to measure risk attitude.

We also measure subjects’ cognitive reflection by administering a cognitive reflec-

tion test (CRT): a comprehensive measure including reasoning, perception, memory,

verbal, mathematical ability, and problem solving. The CRT consists of three ques-

tions (Frederick, 2005). Last, we measure subjects’ attitude toward AI/algorithmic

tools following the technology acceptance model (TAM). Its questionnaire intends

to capture subject’s attitude and use of technology which we adapted to focus on

AI/algorithmic tools. We focused on the following determinants of TAM, that are

relevant in our context: (1) perceived usefulness, (2) perceived ease of use, (3) at-

titude towards use, (4) intention to use and (5) actual use. In total, there are 11

questions. Each question has a scale from 1(strongly disagree) to 5 (strongly agree).

7



4 Results and behavioral insights

4.1 Do people use/trust the AI tool?

First we focus on whether and how human decision-makers use the AI tool in plan-

ning, when available. Do people just apply the recommendations or do they modify

them? When looking at the plan implemented in a round, in around half of the cases

the AI plan is implemented “as-is”. The implies that decision makers largely use the

AI tool (even if it is “black-box”), but they also very frequently modify it. Look-

ing at each decision separately, Table 2 presents how often decision makers decision

makers deviate from AI recommendations per decision and Game. We observe more

deviations for buying (component) decisions and, more interestingly, a drop in the

frequency of deviations in Game 3.

Table 2: Deviations from AI plan per decision and game

To shed light on what drives these deviations, or alternatively (mis-)trust in AI

recommendations, we estimate the impact of individual level characteristics (i.e., at-

titude towards AI technology, risk preferences, cognitive reflection, demographics)

and task experience (i.e., round and game number) on subject’s decision to algorith-

mic modifications. Table 4 summarizes the results of the GLS panel data regression

with errors clustered at the subject level. We find that the general Attitude towards

AI/algorithmic tools (as measured by our questionnaire) decreases deviations from

the AI plan, i.e., it impacts positively decision makers’ adherence to algorithmic rec-

ommendations. Similarly, both the round and the game number also have a negative

impact on deviations. This implies that overall experience with the task (within a

game and across games) positively impacts trust in AI recommendations and use of

the AI tool. While we control for demographic characteristics (age, gender, level

of education, field of study, work experience), none of these factors seem to have a

significant impact on decisions in this context.
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Deviation AI Coefficient St.err. p-value
TAM score -0.61 0.0232 0.008
CRT score -0.16 0.1129 0.169
Risk 0.01 0.0734 0.883
Round -0.16 0.0192 0.000
Game -0.38 0.1395 0.006
Constant 4.963 1.9026 0.009
Demographics Yes
sigma u 1.2048
sigma e 2.1563

Table 3: Drivers of deviations from AI plan

4.2 Does the AI tool help improve performance?

Next we shift our attention to whether the AI tool improves performance. We first

establish that, in line with our expectations, larger adherence to algorithmic recom-

mendations, i.e., AI plan, improves performance. As shown in Table ??, participants’

score in a round decreases in the size of deviations from AI recommendations, control-

ling for the round and demand (similar results hold for the total game score). This

implies that lower trust in AI has a negative effect on performance: subjects who use

the AI plan more make better decisions on average.

Per round score Coefficient St.err. p-value
Cum. dev. AI -0.005 0.0017 0.003
Round 0.091 0.0076 0.000
Demand 0.682 0.0123 0.000
Constant 0.104 0.0536 0.053

Table 4: Drivers of per round score

Next we focus on whether the availability of the AI tool increases performance on

average. We established that while subjects largely use the AI plan, when available,

they often modify it, and this behavior has negative implications for performance.

Therefore, does making the AI tool available significantly improve performance on

average?

Table 5 shows the average total score per Game and treatment. (The light blue

colour indicates the AI plan availability.) In Game 1, there is no AI plan available in

any of the treatmens and averahe performance is not different (Wilxocon rank-sum

tests at the subject-level, p > 0.1). However, in Game 2, total score is significantly
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higher under the AI-able treatment and the baseline (p = 0.0310) but that is not the

case between Learning and Baseline (p > 0.1). In Game 3, we observe no statistically

significant differences among treatments. These results suggest that having the AI

tool available does not necessarily increase performance and that an AI tool seems to

be important only for less experienced users.

Table 5: Total score per game and treatment

Since there are different demand realizations across games and treatments, we also

calculate the fill rate achieved in a game as an alternative measure of performance.

We define aggregate fill rate as the ratio of total points achieved in the game over

total demand. Table 6 summarizes the results.

Table 6: Fill rate per game and treatment

Across all games, fill rates are higher when the AI tool is available (p = 0.0000).

If we zoom in at the game number, fill rates are higher when AI tool is present for

Game 2 (p = 0.0589) but this is not the case for Game 3’s (0.2544). This is in line

with the notion that the AI tool is beneficial for less experienced users.

4.3 Does the AI tool help humans learn?

Last, we turn our attention on whether humans perform better (without an AI tool),

after they had access to an AI tool in a previous game (i.e., does the AI tool facilitate

learning?). We look at planners’ performance without AI when in the prior game

they had access to such a tool and the possibility to observe AI recommendations.

To account for differences in skills, we look at subject’s performance increase between

Game 1 and Game 3 when in Game 2 AI was available and when it was not (Baseline

versus Learning treatments). We are not able to detect a significant overall effect of AI
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on learning at the aggregate level (p > 0.1), considering either total score or fill rate as

a measure of performance. Next, we look closer at specific strategies to assess whether

the exposure to AI plans helps human decision makers learn specific strategies that

are effective in this complex setting but (maybe) non-intuitive. Specifically, we first

look at whether planners learn to buy more finished products towards the end of the

game. In figure 4 we plot the proportion of tokens spent on components per round

in Game 3 versus Game 1. The difference between games does not seem to depend

on the treatment. Last, we look at whether planners learn to take into account the

(a) Baseline treatment (b) Learning treatment

Figure 4: The proportion of tokens spent on components

delay in the sourcing of electronic components (EC). We calculate the average % of

budget spent for buying EC in the first 3 rounds and observe no significant differences

between the Baseline and Learning treatments (Figure 5).

Figure 5: The proportion of tokens spent on EC in baseline and learning treatments
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5 Conclusion and the next research plan

To conclude, we observe that in this complex setting human decision makers largely

use the AI tool (even if the information provided about the algorithm is limited)

but the also very frequently modify it, which decreases performance. Participants’

general attitude towards AI and algorithms, as well as their experience with the task

affect trust in AI recommendations, or alternatively, deviations from the suggested AI

plan. Overall, the availability of an AI tool, taking into account how human planers

use it/modify it, improves the quality of human decisions (measured either by total

score or achieved fill rate) but only for less experienced users (Game 2). In Game 3,

performance is not significantly different for planners who have an AI plan available

versus not. Having more experience with the task also helps improve performance,

suggesting that experience and the AI tool can be substitutes in this context.

While the task is complex, humans seem to learn simple and effective strategies

with task experience. However, the experimental results raised a new question.

Are subjects able to learn and perform well in a more complex setting?

For example, one kind of complexity can be decision-makers under time pressure

to finish the planning decisions. This presents an exciting opportunity for future

research. Furthermore, adherence to AI recommendations increases performance in

this context. Can we nudge decision makers to make better use of the AI plan by in-

creasing transparency about its past performance (outcome transparency), providing

more information about the underlying algorithmic tool (operational transparency) or

training participants (task knowledge) to better understand AI recommendations?
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